# Merge Sort with PThreads in C

Side Note: I'm beginning to learn how to use pthreads and I'm starting to get the concept. I've been using this example script (written in C++) here to manage a Merge Sort with threads: https://www.geeksforgeeks.org/merge-sort-using-multi-threading/

Since I'm writing my own merge sort in C rather than C++, I rewrote this example script to test and noticed an issue. Rather than `MAX 20` for an array of 20 elements, I decided to go with 15. I noticed that the sorting/merging is invalid (yet somewhat close) and I cannot figure out why... In addition, I've altered the code to use a different amount of threads instead of `THREAD_MAX 4` so I may change it to 5 or 10 threads.

Could it be the Merge that's yielding invalid results? I've commented it below within main().

My C++ to C convert below:

``````#include <pthread.h>
#include <time.h>
#include <stdlib.h>

// number of elements in array
#define MAX 15

//using namespace std;

// array of size MAX
int a[MAX];
int part = 0;

// merge function for merging two parts
void merge(int low, int mid, int high)
{
int* left = (int*) malloc( (mid - low + 1) * sizeof(int));
int* right = (int*) malloc( (high - mid) * sizeof(int));

// n1 is size of left part and n2 is size
// of right part
int n1 = mid - low + 1,
n2 = high - mid,
i, j;

// storing values in left part
for (i = 0; i < n1; i++)
left[i] = a[i + low];

// storing values in right part
for (i = 0; i < n2; i++)
right[i] = a[i + mid + 1];

int k = low;
i = j = 0;

// merge left and right in ascending order
while (i < n1 && j < n2) {
if (left[i] <= right[j])
a[k++] = left[i++];
else
a[k++] = right[j++];
}

// insert remaining values from left
while (i < n1) {
a[k++] = left[i++];
}

// insert remaining values from right
while (j < n2) {
a[k++] = right[j++];
}

free(left);
free(right);
}

// merge sort function
void merge_sort(int low, int high)
{
// calculating mid point of array
int mid = low + (high - low) / 2;
if (low < high) {

// calling first half
merge_sort(low, mid);

// calling second half
merge_sort(mid + 1, high);

// merging the two halves
merge(low, mid, high);
}
}

void* merge_sort123(void* arg)
{
// which part out of 4 parts

// calculating low and high
int high = (thread_part + 1) * (MAX / THREAD_MAX) - 1;

// evaluating mid point
int mid = low + (high - low) / 2;
if (low < high) {
merge_sort(low, mid);
merge_sort(mid + 1, high);
merge(low, mid, high);
}
return 0;
}

// Driver Code
int main()
{
// generating random values in array
for (int i = 0; i < MAX; i++){
a[i] = rand() % 100;
//        printf("%d ", a[i]);
}

for (int i = 0; i < THREAD_MAX; i++)
(void*)NULL);

for (int i = 0; i < THREAD_MAX; i++)

///////////////////////////////////////////////////////////////
// --- THIS MAY BE THE PART WHERE THE MERGING IS INVALID --- //
///////////////////////////////////////////////////////////////
// merging the final 4 parts
merge(0, (MAX / 2 - 1) / 2, MAX / 2 - 1);
merge(MAX / 2, MAX/2 + (MAX-1-MAX/2)/2, MAX - 1);
merge(0, (MAX - 1)/2, MAX - 1);

// displaying sorted array
printf("\n\nSorted array: ");
for (int i = 0; i < MAX; i++)
printf ("%d ", a[i]);

printf("\n");
return 0;
}
``````

As I mentioned in the top comments, there are a few issues with the original code.

The above race condition.

The [seemingly] missing `delete` at the bottom of `merge`

The fact that the number of array elements must be a multiple of the number of threads. If not, the range for the last thread will be calculated incorrectly.

The final merge in the main thread is fixed/hardwired for 4 threads.

A general solution is possible. However, unless the array size is very large, it isn't as big a time saver, so it's mostly for practice with multithreading [which is what you wanted, I believe]. See: Multithreaded quicksort or mergesort

It is easier to pass several parameters to a thread using a control struct. This is good technique for multithreading in general.

The main thread can prepopulate this with the array ranges for each thread. It can later use these control structs to generalize the final merge.

Here's a a cleaned up version that works for an arbitrary array size and arbitrary number of threads:

``````#include <stdio.h>
#include <time.h>
#include <stdlib.h>

int opt_a;
int opt_t;
int opt_r;

// number of elements in array
//#define MAX 15
//#define MAX 16
int MAX;

//using namespace std;

// array of size MAX
int *a;

struct tsk {
int tsk_no;
int tsk_low;
int tsk_high;
};

// merge function for merging two parts
void
merge(int low, int mid, int high)
{

// n1 is size of left part and n2 is size of right part
int n1 = mid - low + 1;
int n2 = high - mid;

int *left = malloc(n1 * sizeof(int));
int *right = malloc(n2 * sizeof(int));

int i;
int j;

// storing values in left part
for (i = 0; i < n1; i++)
left[i] = a[i + low];

// storing values in right part
for (i = 0; i < n2; i++)
right[i] = a[i + mid + 1];

int k = low;

i = j = 0;

// merge left and right in ascending order
while (i < n1 && j < n2) {
if (left[i] <= right[j])
a[k++] = left[i++];
else
a[k++] = right[j++];
}

// insert remaining values from left
while (i < n1)
a[k++] = left[i++];

// insert remaining values from right
while (j < n2)
a[k++] = right[j++];

free(left);
free(right);
}

// merge sort function
void
merge_sort(int low, int high)
{

// calculating mid point of array
int mid = low + (high - low) / 2;

if (low < high) {
// calling first half
merge_sort(low, mid);

// calling second half
merge_sort(mid + 1, high);

// merging the two halves
merge(low, mid, high);
}
}

void *
merge_sort123(void *arg)
{
struct tsk *tsk = arg;
int low;
int high;

// calculating low and high
low = tsk->tsk_low;
high = tsk->tsk_high;

// evaluating mid point
int mid = low + (high - low) / 2;

if (low < high) {
merge_sort(low, mid);
merge_sort(mid + 1, high);
merge(low, mid, high);
}

return 0;
}

// Driver Code
int
main(int argc, char **argv)
{
char *cp;
struct tsk *tsk;

--argc;
++argv;

MAX = 15;

// use new/general algorithm by default
opt_a = 1;

for (; argc > 0; --argc, ++argv) {
cp = *argv;
if (*cp != '-')
break;

switch (cp[1]) {
case 'M':  // array count
MAX = atoi(cp + 2);
break;

break;

case 'a':  // change algorithm
opt_a = !opt_a;
break;

case 'r':  // do _not_ use rand -- use linear increment
opt_r = !opt_r;
break;

case 't':  // tracing
opt_t = !opt_t;
break;

default:
break;
}
}

// allocate the array
a = malloc(sizeof(int) * MAX);

// generating random values in array
if (opt_t)
printf("ORIG:");
for (int i = 0; i < MAX; i++) {
if (opt_r)
a[i] = MAX - i;
else
a[i] = rand() % 100;
if (opt_t)
printf(" %d", a[i]);
}
if (opt_t)
printf("\n");

int len = MAX / THREAD_MAX;

if (opt_t)

int low = 0;

for (int i = 0; i < THREAD_MAX; i++, low += len) {
tsk = &tsklist[i];
tsk->tsk_no = i;

if (opt_a) {
tsk->tsk_low = low;
tsk->tsk_high = low + len - 1;
if (i == (THREAD_MAX - 1))
tsk->tsk_high = MAX - 1;
}

else {
tsk->tsk_low = i * (MAX / THREAD_MAX);
tsk->tsk_high = (i + 1) * (MAX / THREAD_MAX) - 1;
}

if (opt_t)
printf("RANGE %d: %d %d\n", i, tsk->tsk_low, tsk->tsk_high);
}

for (int i = 0; i < THREAD_MAX; i++) {
tsk = &tsklist[i];
}

for (int i = 0; i < THREAD_MAX; i++)

// show the array values for each thread
if (opt_t) {
for (int i = 0; i < THREAD_MAX; i++) {
tsk = &tsklist[i];
printf("SUB %d:", tsk->tsk_no);
for (int j = tsk->tsk_low; j <= tsk->tsk_high; ++j)
printf(" %d", a[j]);
printf("\n");
}
}

// merging the final 4 parts
if (opt_a) {
struct tsk *tskm = &tsklist[0];
for (int i = 1; i < THREAD_MAX; i++) {
struct tsk *tsk = &tsklist[i];
merge(tskm->tsk_low, tsk->tsk_low - 1, tsk->tsk_high);
}
}
else {
merge(0, (MAX / 2 - 1) / 2, MAX / 2 - 1);
merge(MAX / 2, MAX / 2 + (MAX - 1 - MAX / 2) / 2, MAX - 1);
merge(0, (MAX - 1) / 2, MAX - 1);
}

// displaying sorted array
printf("\n\nSorted array:");
for (int i = 0; i < MAX; i++)
printf(" %d", a[i]);
printf("\n");

return 0;
}
``````