Google colab, RAM memory full when converting CSV pixel data to images
I've google colab pro for a deep learning project im doing so i've 25gb RAM available.
I'm convering pixels from a csv to images, after around 4 minutes my colab notebook crashes due to no RAM memory left. I believe its something to do with the resizing, as i've tried models before with no resizing and it works no problem.
Any idea what is causing such high RAM usage and any solutions? Code below:
def get_data(dataset):
data = pd.read_csv(path+'fer2013.csv')
pixels = data['pixels'].tolist()
images = np.empty((len(data), img_height, img_width, 3))
i = 0
for pixel_sequence in pixels:
single_image = [float(pixel) for pixel in pixel_sequence.split(' ')] # Extraction of each single
single_image = np.asarray(single_image).reshape(48, 48) # Dimension: 48x48
single_image = resize(single_image, (img_height, img_width), order = 3, mode = 'constant') # Dimension: 139x139x3 (Bicubic)
ret = np.empty((img_height, img_width, 3))
ret[:, :, 0] = single_image
ret[:, :, 1] = single_image
ret[:, :, 2] = single_image
images[i, :, :, :] = ret
i += 1
images = preprocess_input(images)
labels = to_categorical(data['emotion'])
return images, labels
do you know?
how many words do you know
See also questions close to this topic
-
Python File Tagging System does not retrieve nested dictionaries in dictionary
I am building a file tagging system using Python. The idea is simple. Given a directory of files (and files within subdirectories), I want to filter them out using a filter input and tag those files with a word or a phrase.
If I got the following contents in my current directory:
data/ budget.xls world_building_budget.txt a.txt b.exe hello_world.dat world_builder.spec
and I execute the following command in the shell:
py -3 tag_tool.py -filter=world -tag="World-Building Tool"
My output will be:
These files were tagged with "World-Building Tool": data/ world_building_budget.txt hello_world.dat world_builder.spec
My current output isn't exactly like this but basically, I am converting all files and files within subdirectories into a single dictionary like this:
def fs_tree_to_dict(path_): file_token = '' for root, dirs, files in os.walk(path_): tree = {d: fs_tree_to_dict(os.path.join(root, d)) for d in dirs} tree.update({f: file_token for f in files}) return tree
Right now, my dictionary looks like this:
key:''
.In the following function, I am turning the empty values
''
into empty lists (to hold my tags):def empty_str_to_list(d): for k,v in d.items(): if v == '': d[k] = [] elif isinstance(v, dict): empty_str_to_list(v)
When I run my entire code, this is my output:
hello_world.dat ['World-Building Tool'] world_builder.spec ['World-Building Tool']
But it does not see
data/world_building_budget.txt
. This is the full dictionary:{'data': {'world_building_budget.txt': []}, 'a.txt': [], 'hello_world.dat': [], 'b.exe': [], 'world_builder.spec': []}
This is my full code:
import os, argparse def fs_tree_to_dict(path_): file_token = '' for root, dirs, files in os.walk(path_): tree = {d: fs_tree_to_dict(os.path.join(root, d)) for d in dirs} tree.update({f: file_token for f in files}) return tree def empty_str_to_list(d): for k, v in d.items(): if v == '': d[k] = [] elif isinstance(v, dict): empty_str_to_list(v) parser = argparse.ArgumentParser(description="Just an example", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--filter", action="store", help="keyword to filter files") parser.add_argument("--tag", action="store", help="a tag phrase to attach to a file") parser.add_argument("--get_tagged", action="store", help="retrieve files matching an existing tag") args = parser.parse_args() filter = args.filter tag = args.tag get_tagged = args.get_tagged current_dir = os.getcwd() files_dict = fs_tree_to_dict(current_dir) empty_str_to_list(files_dict) for k, v in files_dict.items(): if filter in k: if v == []: v.append(tag) print(k, v) elif isinstance(v, dict): empty_str_to_list(v) if get_tagged in v: print(k, v)
-
Actaully i am working on a project and in it, it is showing no module name pip_internal plz help me for the same. I am using pycharm(conda interpreter
File "C:\Users\pjain\AppData\Local\Programs\Python\Python310\lib\runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "C:\Users\pjain\AppData\Local\Programs\Python\Python310\lib\runpy.py", line 86, in _run_code exec(code, run_globals) File "C:\Users\pjain\AppData\Local\Programs\Python\Python310\Scripts\pip.exe\__main__.py", line 4, in <module> File "C:\Users\pjain\AppData\Local\Programs\Python\Python310\lib\site-packages\pip\_internal\__init__.py", line 4, in <module> from pip_internal.utils import _log
I am using pycharm with conda interpreter.
-
Looping the function if the input is not string
I'm new to python (first of all) I have a homework to do a function about checking if an item exists in a dictionary or not.
inventory = {"apple" : 50, "orange" : 50, "pineapple" : 70, "strawberry" : 30} def check_item(): x = input("Enter the fruit's name: ") if not x.isalpha(): print("Error! You need to type the name of the fruit") elif x in inventory: print("Fruit found:", x) print("Inventory available:", inventory[x],"KG") else: print("Fruit not found") check_item()
I want the function to loop again only if the input written is not string. I've tried to type return Under print("Error! You need to type the name of the fruit") but didn't work. Help
-
how to print all parameters of a keras model
I am trying to print all the 1290 parameters in
dense_1
layer, butmodel.get_weights()[7]
only show 10 parameters. How could I print all the 1290 parameters ofdense_1
layer? What is the difference betweenmodel.get_weights()
andmodel.layer.get_weights()
>model.get_weights()[7] array([-2.8552295e-04, -4.3254648e-03, -1.8752701e-04, 2.3482188e-03, -3.4848123e-04, 7.6121779e-04, -2.7494309e-06, -1.9068648e-03, 6.0777756e-04, 1.9550985e-03], dtype=float32) >model.summary() Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= conv2d (Conv2D) (None, 26, 26, 32) 320 conv2d_1 (Conv2D) (None, 24, 24, 64) 18496 max_pooling2d (MaxPooling2D (None, 12, 12, 64) 0 ) dropout (Dropout) (None, 12, 12, 64) 0 flatten (Flatten) (None, 9216) 0 dense (Dense) (None, 128) 1179776 dropout_1 (Dropout) (None, 128) 0 dense_1 (Dense) (None, 10) 1290 _________________________________________________________________ ================================================================= Total params: 1,199,882 Trainable params: 1,199,882 Non-trainable params: 0 _________________________________________________________________
-
Can't use Keras MeanIoU to train semantic segmentation model
I'm working on a binary semantic segmentation problem. I built an UNet model with MobileNetV2 backbone. Here is my model code:
def upsample(filters, size, apply_dropout=False): initializer = tf.random_normal_initializer(0., 0.02) layer = Sequential() layer.add(layers.Conv2DTranspose(filters, size, strides=2, padding='same', kernel_initializer=initializer, use_bias=False)) layer.add(layers.BatchNormalization()) if apply_dropout: layer.add(layers.Dropout(0.5)) layer.add(layers.ReLU()) return layer def UNet(image_size, num_classes): inputs = Input(shape=image_size + (3,)) base_model = applications.MobileNetV2(input_shape=image_size + (3,), include_top=False) layer_names = [ 'block_1_expand_relu', 'block_3_expand_relu', 'block_6_expand_relu', 'block_13_expand_relu', 'block_16_project', ] base_model_outputs = [base_model.get_layer(name).output for name in layer_names] down_stack = Model(inputs=base_model.input, outputs=base_model_outputs) down_stack.trainable = False up_stack = [ upsample(512, 3), upsample(256, 3), upsample(128, 3), upsample(64, 3) ] skips = down_stack(inputs) x = skips[-1] skips = reversed(skips[:-1]) for up, skip in zip(up_stack, skips): x = up(x) x = layers.Concatenate()([x, skip]) outputs = layers.Conv2DTranspose(filters=num_classes, kernel_size=3, strides=2, padding='same')(x) return Model(inputs, outputs)
To load the images and masks for training, I built an image loader inherits from
keras.Sequnce
.class ImageLoader(utils.Sequence): def __init__(self, batch_size, img_size, img_paths, mask_paths): self.batch_size = batch_size self.img_size = img_size self.img_paths = img_paths self.mask_paths = mask_paths def __len__(self): return len(self.mask_paths) // self.batch_size def __getitem__(self, idx): i = idx * self.batch_size batch_img_paths = self.img_paths[i:i + self.batch_size] batch_mask_paths = self.mask_paths[i:i + self.batch_size] x = np.zeros((self.batch_size,) + self.img_size + (3,), dtype='float32') for j, path in enumerate(batch_img_paths): img = utils.load_img(path, target_size=self.img_size) img = utils.img_to_array(img) x[j] = img y = np.zeros((self.batch_size,) + self.img_size + (1,), dtype='uint8') for j, path in enumerate(batch_mask_paths): img = utils.load_img(path, target_size=self.img_size, color_mode='grayscale') img = utils.img_to_array(img) # [0, 255] -> [0, 1] img //= 255 y[j] = img return x, y
In my segmentation problem, all the labels are in the range [0, 1]. However, when I try to compile and then fit the model using Adam optimizer, Sparse categorical cross entropy loss and metric
tf.keras.metrics.MeanIoU
, I encountered with the following problem:Node: 'confusion_matrix/assert_non_negative_1/assert_less_equal/Assert/AssertGuard/Assert' 2 root error(s) found. (0) INVALID_ARGUMENT: assertion failed: [`predictions` contains negative values. ] [Condition x >= 0 did not hold element-wise:] [x (confusion_matrix/Cast:0) = ] [-1 -1 -1...] [[{{node confusion_matrix/assert_non_negative_1/assert_less_equal/Assert/AssertGuard/Assert}}]] [[confusion_matrix/assert_less_1/Assert/AssertGuard/pivot_f/_31/_67]] (1) INVALID_ARGUMENT: assertion failed: [`predictions` contains negative values. ] [Condition x >= 0 did not hold element-wise:] [x (confusion_matrix/Cast:0) = ] [-1 -1 -1...] [[{{node confusion_matrix/assert_non_negative_1/assert_less_equal/Assert/AssertGuard/Assert}}]]
At first, I used accuracy as a metrics for training and I didn't encounter this problem, however when I changed to MeanIoU, this problem happened. Does anyone know how to fix this problem? Thank you very much!
UPDATE: I've searched on StackOverflow and found this question about a similar error, however the fix mentioned in that link (reduce learning rate) doesn't work in my case.
-
Training plot is not appearing properly for keras model
I have data where I need to train it with X and Y. Traning part is done but when I want to plot the prediction and actual data, it is appearing with so many lines instead of showing just non-linear regression line.
model= Sequential() model.add(Dense(7,input_dim=1, activation="tanh")) model.add(Dense(1)) model.compile(loss="mse", optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), metrics= ["mae"]) history=model.fit(X,Y,epochs=1000) predict=model.predict(X) plt.scatter(X, Y,edgecolors='g') plt.plot(X, predict,'r') plt.legend([ 'Predictated Y' ,'Actual Y']) plt.show()
Please see the attached imageplotting image
-
How can I make a setup command only run the first time a Jupyter notebook is ran?
Im doing a machine learning project in google colab. Each time an instance is started, I want to run these commands:
! mkdir ~/.kaggle # make directory ".kaggle" ! cp kaggle.json ~/.kaggle/ # copy the json file into the directory ! chmod 600 ~/.kaggle/kaggle.json # allocate required permission for the file ! kaggle datasets download -d alessiocorrado99/animals10 # download animal set ! unzip animals10.zip
These commands download and extract a dataset I need. However, it only needs to be ran the first run through only. When clicking "Run All" after the initial download of the dataset, it requires user input to decide whether to replace the files or not. I also don't want to keep downloading from kaggle and use resources unnecesarily.
My current approach is to run the script once then comment out the initialization script, but this takes time and effort.
How can I automate this process so a certain cell only runs on the first run of the runtime?
-
Where is the official manifest / definition of google colab's environment?
Is there a website or git repository where there is a clear listing of all the python packages and other dependencies installed on Google CoLaboratory? Is there a docker image that corresponds to a Google CoLab environment?
-
Jupyter progress bar empty
I'm running the following line of code from a Huggingface tokenizer on a Jupyter notebook:
my_data.map(tokenize_function, batched=True, num_proc=4, remove_columns=['text'])
I know it has been executed because there are 6 download bars, but there are all empty and show no progress. The numbers are not moving either. I'm wondering if there is an issue, or if I should add
tqdm
although it does not seem like the solution.