How would I put my own dataset into this code?

I have been looking at a Tensorflow tutorial for unsupervised learning, and I'd like to put in my own dataset; the code currently uses the MNIST dataset. I know how to create my own datasets in Tensorflow, but I have trouble setting the code used here to my own. I am pretty new to Tensorflow, and the filepath to my dataset in my project is \data\training and \data\test-val\

# Python ≥3.5 is required
import sys
assert sys.version_info >= (3, 5)

# Scikit-Learn ≥0.20 is required
import sklearn
assert sklearn.__version__ >= "0.20"

# TensorFlow ≥2.0-preview is required
import tensorflow as tf
from tensorflow import keras
assert tf.__version__ >= "2.0"

# Common imports
import numpy as np
import os

(X_train_full, y_train_full), (X_test, y_test) = keras.datasets.fashion_mnist.load_data()
X_train_full = X_train_full.astype(np.float32) / 255
X_test = X_test.astype(np.float32) / 255
X_train, X_valid = X_train_full[:-5000], X_train_full[-5000:]
y_train, y_valid = y_train_full[:-5000], y_train_full[-5000:]

def rounded_accuracy(y_true, y_pred):
    return keras.metrics.binary_accuracy(tf.round(y_true), tf.round(y_pred))

tf.random.set_seed(42)
np.random.seed(42)

conv_encoder = keras.models.Sequential([
    keras.layers.Reshape([28, 28, 1], input_shape=[28, 28]),
    keras.layers.Conv2D(16, kernel_size=3, padding="SAME", activation="selu"),
    keras.layers.MaxPool2D(pool_size=2),
    keras.layers.Conv2D(32, kernel_size=3, padding="SAME", activation="selu"),
    keras.layers.MaxPool2D(pool_size=2),
    keras.layers.Conv2D(64, kernel_size=3, padding="SAME", activation="selu"),
    keras.layers.MaxPool2D(pool_size=2)
])
conv_decoder = keras.models.Sequential([
    keras.layers.Conv2DTranspose(32, kernel_size=3, strides=2, padding="VALID", activation="selu",
                                 input_shape=[3, 3, 64]),
    keras.layers.Conv2DTranspose(16, kernel_size=3, strides=2, padding="SAME", activation="selu"),
    keras.layers.Conv2DTranspose(1, kernel_size=3, strides=2, padding="SAME", activation="sigmoid"),
    keras.layers.Reshape([28, 28])
])
conv_ae = keras.models.Sequential([conv_encoder, conv_decoder])

conv_ae.compile(loss="binary_crossentropy", optimizer=keras.optimizers.SGD(lr=1.0),
                metrics=[rounded_accuracy])
history = conv_ae.fit(X_train, X_train, epochs=5,
                      validation_data=[X_valid, X_valid])

conv_encoder.summary()
conv_decoder.summary()

conv_ae.save("\models")

Do note that I got this code from another StackOverflow answer.

How many English words
do you know?
Test your English vocabulary size, and measure
how many words do you know
Online Test
Powered by Examplum